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The Parabolic Spline Method (PSM) for conservative
transport problems

M. Zerroukat∗;†, N. Wood‡ and A. Staniforth§
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SUMMARY

A new and e�cient parabolic spline based remapping algorithm is developed and tested herein. To
ensure mass conservation, the scheme solves an integral form of the transport equation rather than the
di�erential form. The integrals are computed from reconstructed parabolic splines with mass conser-
vation constraints. For higher dimensions, this remapping can be used within a standard directional
splitting methodology or within the �ow-dependent cascade splitting approach. A grid and sub-grid
based monotonic �lter is also incorporated into the overall scheme. A truncation error analysis of the
scheme is presented and discussed in terms of results from test cases. The analysis shows that although
it has a similar truncation error in the converged limit as that of the widely used Piecewise Parabolic
Method (PPM) for in�nitely di�erentiable functions, PSM is more accurate than PPM for problems
with slow spectral decay. Additionally, an operation count of the scheme is given which demonstrates
the computational advantage of PSM compared to PPM. ? Crown copyright 2005. Reproduced with
the permission of Her Majesty’s Stationery O�ce. Published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Remapping algorithms, such as the widely used Piecewise Parabolic Method (PPM) [1], are
an important component in many advection schemes for conservative transport. These remap-
pings are also the building blocks of many of the inherently conserving semi-Lagrangian
schemes [2–11].
Herein, a more e�cient variant of PPM based on the Parabolic Spline Method (PSM)

is presented. PSM is similar to PPM but with additional smoothness arising from its ‘best
approximation’ property. Truncation error analysis of both schemes shows that although both
PPM and PSM have similar accuracy in the converged limit for in�nitely di�erentiable

∗Correspondence to: M. Zerroukat, Met O�ce, FitzRoy Road, Exeter EX1 3PB, U.K.
†E-mail: mohamed.zerroukat@meto�ce.gov.uk
‡E-mail: nigel.wood@meto�ce.gov.uk
§E-mail: andrew.staniforth@meto�ce.gov.uk

Received 1 August 2005
? Crown copyright 2005. Reproduced with the permission of Her Revised 28 October 2005
Majesty’s Stationery O�ce. Published by John Wiley & Sons, Ltd. Accepted 7 November 2005



1298 M. ZERROUKAT, N. WOOD AND A. STANIFORTH

waves, PSM is more accurate than PPM for problems with slow spectral decay such as
those occurring in atmospheric �ow. Furthermore, an improved version of the monotonicity
�lter reported in Reference [12] is incorporated into the scheme. The �lter achieves mono-
tonicity without (except in extreme cases) reducing the order of the piecewise polynomial and
hence it captures more accurately steep gradients (or curvature) without an arti�cial steepening
approach.
The rest of the paper is organized as follows: Section 2 details the 1D remapping algorithm;

in Section 3 the performance of the proposed scheme, and its comparison with PPM, is
analysed using an operation count, truncation error analysis and numerical convergence tests;
results using the proposed scheme with its monotonic �lter are presented in Section 4 and
compared with those using PPM and its monotonic �lter; and conclusions are summarized in
Section 5.

2. 1D REMAPPING

2.1. Problem de�nition

Consider passive 1D conservative transport of a scalar quantity � governed, in the absence of
sources and sinks, by

@�
@t
+
@
@x
(u�)=0 (1)

where �(x; t) is the density (amount of scalar per unit length) of the transported quantity, and
u(x; t) is the transporting velocity �eld.
Integrating (1) with respect to x between two arbitrary moving boundaries x1 = x1(x; t) and

x2 = x2(x; t), and making use of Leibniz’ rule, leads to [5]

d
dt

∫ x2(x;t)

x1(x;t)
� dx −

[
�(x2; t)

dx2
dt

− �(x1; t)dx1dt
]
+ [�(x2; t)u(x2; t)− �(x1; t)u(x1; t)]=0 (2)

If the boundaries x1 and x2 are moving with the �uid, i.e. if

dx1
dt
= u(x1; t);

dx2
dt
= u(x2; t) (3)

then (2) simpli�es to the classical integral form of the tracer conservation equation

dM (x1; x2; t)
dt

≡ d
dt

(∫ x2(t)

x1(t)
�(x; t) dx

)
=0 (4)

Equation (4) simply states that the mass M (x1; x2; t) contained between any two boundaries
x1(t) and x2(t), moving with the �uid, is invariant in time, i.e. M is conserved.
Since x1(t) and x2(t) in (4) are any two points travelling with the �uid, one can con-

sider that these moving boundaries instantaneously coincide at time tn+1 with the bound-
aries of an Eulerian Control Volume (ECV), whilst their upstream positions x1(tn) and x2(tn)
at time tn form the left and right boundaries of the associated upstream Lagrangian Control
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Volume (LCV). In other words, since the �uid is a continuum, then the �uid contained in the
Lagrangian segment [xd1 ; x

d
2 ]≡ [x1(tn); x2(tn)] is completely transported to the Eulerian segment

[x1(tn+1); x2(tn+1)] (this provides the basis of the SLICE scheme [2]).
To discretize (4), consider the general case where the computational 1D domain

�= [xmin; xmax] is subdivided into N ECVs with (possibly unequal) spacing hi ≡ xi+1=2− xi−1=2
(i=1; 2; : : : ; N ), where xi−1=2 and xi+1=2 are, respectively, the left and right boundaries of ECVi.
De�ning the gridbox-averaged density at time t as

��i(t)≡
1
hi

∫ xi+1=2

xi−1=2

�(x; t) dx≡ 1
hi
M (xi−1=2; xi+1=2; t)≡ 1

hi
Mi (5)

the time-discretization of (4) can then be rewritten as

��n+1i ≡ ��i(t
n+1)≡ 1

hi
(Mi)n+1 =

1
hi
(Md

i )
n (6)

where

Md
i ≡

∫ xdi+1=2

xdi−1=2

�(x; t) dx (7)

Here superscript n denotes evaluation at time tn, superscript d denotes association with a
departure-point value (as in semi-Lagrangian schemes [13]), and xdi−1=2 and x

d
i+1=2 are, respec-

tively, the left- and right-hand boundaries of LCVi at time tn, determined from numerical
integration of (3)—see, e.g. Reference [13].
In general, the shape of �(x; tn) is not known a priori. Instead piecewise polynomials that

use the given discrete gridbox-averaged values can be reconstructed. Previous approaches have
used either piecewise constant, piecewise linear [14], piecewise parabolic [1, 5] or piecewise
cubic [2, 8] polynomials. Herein a parabolic spline method is proposed.

2.2. The parabolic spline method (PSM)

2.2.1. Formulation. Let �i(x) be a local (i.e. speci�c to ECVi) parabola de�ned on the
interval [xi−1=2; xi+1=2]. �i(x) may be uniquely de�ned in terms of the two meshpoint val-
ues �i−1=2 ≡�i(xi−1=2), �i+1=2 ≡�i(xi+1=2) and the interval-averaged value

��i ≡
1
hi

∫ xi+1=2

xi−1=2

�i(x) dx (8)

Thus

�i(�)= a
(0)
i + a(1)i �+ a

(2)
i �

2; �∈ [0; 1] (9)

where �≡ (x−xi−1=2)=hi is a dimensionless local coordinate, and (a(0)i ; a(1)i ; a(2)i ) are coe�cients
de�ned such that

a(0)i = �i−1=2 (10)

a(1)i = −4�i−1=2 − 2�i+1=2 + 6 ��i (11)
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a(2)i = 3�i−1=2 + 3�i+1=2 − 6 ��i (12)

��i =
∫ 1

0
�i(�) d� (13)

By construction �i(x), as a piecewise parabola de�ned by (9) for i=1; 2; : : :, is continuous
at all meshpoints xi±1=2; i=1; 2; : : : . However, only the interval averaged quantities ��i are
known, the meshpoint values �i+1=2 are not. The problem is closed and �i+1=2 determined by
imposing the condition that its �rst derivative also be continuous at these same meshpoints.
This condition de�nes a parabolic spline, and yields an equation that relates the three quantities
�i−1=2, �i+1=2 and �i+3=2 to ��i and ��i+1. This is achieved by making use of (10)–(12) and
equating (d�i=dx)|xi+1=2 and (d�i+1=dx)|xi+1=2 , which gives

1
hi
�i−1=2 + 2

(
1
hi
+

1
hi+1

)
�i+1=2 +

1
hi+1

�i+3=2 = 3
(
1
hi
��i +

1
hi+1

��i+1

)
(14)

It is the fact that the given quantities are the interval-averaged values ��i rather than the
meshpoint values �i+1=2 that makes the problem here di�erent to the de�nition of a traditional
spline. Equation (14) de�nes a linear system of equations for the unknown �’s in terms of the
known ��’s. Boundary conditions are required to close the problem and this is achieved in an
analogous manner to that used to de�ne a traditional cubic spline (e.g. see References [15, 16]
and also Section 2.2.2 below). For a bounded domain, the simplest way of determining the two
missing degrees of freedom is to impose d�=dx=0 at the two endpoints x= x1=2 and x= xN+1=2,
corresponding to an assumption of zero slope there. These are the natural conditions for the
parabolic spline de�ned here, see Section 2.2.2 for details. Other choices are also possible—
see e.g. References [15, 16]. For a periodic domain, the problem is closed via the application
of periodicity.
The matrix associated with the system of linear equations de�ned by (14) and associated

boundary conditions is tridiagonal with non-zero determinant and is invertible. Solving this
system for the �’s results in all the coe�cients of all the parabolae �i(�); i=1; 2; : : : ; N ,
de�ned by (9), being known. The reconstructed function then constitutes a parabolic spline
since it is piecewise parabolic and is everywhere continuous with continuous �rst derivatives,
including at the interval boundaries (also known as knots).

2.2.2. Link with classical cubic splines and best approximation. To link the parabolic spline
developed above to classical cubic splines, �rst de�ne a new variable, cumulative mass, by

R(x)≡R1=2 +
∫ x

x1=2

�(x) dx (15)

where R1=2 is a constant. Di�erentiating (15) gives

dR(x)
dx

=�(x) (16)

which, after integration from x= xi−1=2 to x= xi+1=2 and use of (8), then yields

1
hi
(Ri+1=2 − Ri−1=2)= 1

hi

∫ xi+1=2

xi−1=2

�(x) dx≡ ��i (17)
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Equation (14) can now be rewritten using (17) as

1
hi
�i−1=2+2

(
1
hi
+
1
hi+1

)
�i+1=2+

1
hi+1

�i+3=2=
3
h2i
(Ri+1=2−Ri−1=2)+ 3

h2i+1
(Ri+3=2−Ri+1=2) (18)

Comparing this with (2.1.14) of Reference [15], and taking account of di�erences in notation
(�→m;R→y) and indexing convention (all indices of � and R are decremented by 1=2), it
is seen that they are formally equivalent. Thus the parabolic spline de�ned herein in terms of
the discrete values ��i can be considered to be equivalent to a classical cubic spline de�ned in
terms of the discrete values Ri+1=2 of a cumulative mass function. In other words the values
of �i+1=2 obtained from (14) are the same as would result from �tting a classical cubic spline
through the discrete values Ri+1=2 of the cumulative mass function (15). These latter, if needed,
can be recursively materialized from (15) by imposing the arbitrary reference value R1=2 = 0
(the Ri+1=2’s are only de�ned to within an arbitrary additive constant).
A property of classical cubic splines (Section 2.2 in Reference [15]) is the ‘best approxima-

tion’ property: of all piecewise-cubic functions, the cubic spline is optimal in the sense that it
minimizes the integrated square curvature, and it is therefore the smoothest such function to
�t given data. In the present context, this means that the parabolic spline de�ned herein can
be viewed as having a ‘best approximation’ property for the representation of the cumulative
mass function R.
From (16), d2R=dx2 = d�=dx. Thus minimizing the integrated squared curvature of R over

the domain, i.e. minimizing I ≡∑i

∫ xi+1=2
xi−1=2

(d2R=dx2)2 dx, is equivalent to minimizing I =
∑

i

∫ xi+1=2
xi−1=2

(d�i=dx)2 dx. It can be veri�ed that this is indeed true for the parabolic spline de�ned herein.
First note that

I ≡∑
i

∫ xi+1=2

xi−1=2

[
d�i(x)
dx

]2
dx=

∑
i

1
hi

∫ 1

0

[
d�i(�)
d�

]2
d�=

∑
i

1
hi

∫ 1

0
[a(1)i + 2a(2)i �]

2 d� (19)

For a periodic domain, explicit substitution of (11) and (12) into (19), followed by min-
imization with respect to the coe�cients �i−1=2, then leads to (14) which (after the peri-
odic ‘wrap-around’) holds at all points in the domain. It is the key condition that turns the
piecewise-parabolic function into a parabolic spline. For a bounded domain, applying the same
procedure for the coe�cients �3=2; �5=2; : : : ; �N−1=2 also leads to (14). Applying this procedure
for �1=2 and �N+1=2 leads to (2�1=2 +�3=2 − 3 ��1)=0 and (�N−1=2 + 2�N+1=2 − 3 ��N )=0, respec-
tively. These are exactly the results that are obtained if the de�nition of the parabolic spline
is closed by imposing the boundary condition d�=dx=0 at the endpoints x1=2 and xN+1=2.
From (16), when constructing a cubic spline in terms of the cumulative mass function R,
this corresponds to imposing d2R=dx2 = 0 at the boundaries. This is the ‘natural’ boundary
condition for a cubic spline [15], so d�=dx=0 can be viewed as being the ‘natural’ boundary
condition for the equivalent parabolic spline de�ned herein.

2.2.3. Monotonicity. Having determined the properties of each local parabola, a monotoni-
city �lter is used to detect spurious non-monotonic behaviour at the grid and sub-grid scales,
and to then modify locally the parabola to restore monotonicity. This is achieved using
an improved version of the algorithm detailed in Reference [12]. The algorithm has two
parts: (i) detection of Control Volumes (CVs) where monotonicity is spuriously violated; and
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(ii) for these �agged CVs, successive local reduction of the degree or reduction in continuity
of the piecewise polynomial representation until monotonicity is achieved.
There are two possible sources for the spurious violation of monotonicity which can be char-

acterized as being grid-scale and sub-grid-scale. Firstly, the estimates {�i−1=2; i=1; : : : ; N +1}
at the CV boundary of each parabola, as a complete set, are tested for undershoots and over-
shoots with respect to { ��i; i=1; : : : ; N}. This is termed grid-scale violation and the algorithm
in Reference [12] is used to identify and modify the set {�i−1=2; i=1; : : : ; N +1} accordingly.
Secondly, the local parabola may itself spuriously violate monotonicity within the interval
over which it is de�ned. This is a sub-grid-scale violation. In the present algorithm it is this
sub-grid violation which is treated di�erently from the approach in Reference [12].
Assume that an interval has been detected that is not monotonic. The underlying strategy

adopted in Reference [12] for imposing monotonicity is: (i) to always retain the conservation
constraint (13); (ii) to progressively degrade the order of the reconstruction polynomial by
introducing local discontinuities; while (iii) to the extent possible, trying to respect one of
the two left-interval and right-interval values. In this paper, step (ii) is slightly modi�ed
so that the order of the reconstruction is maintained if possible, albeit at the expense of
continuity. This improved approach of achieving monotonicity while maintaining a higher
degree polynomial, allows the �lter to better capture steep gradients in regions of undershoots
and overshoots. This results in better accuracy and less damping for such regions. Using the
nomenclature in Reference [1], this can be seen as ‘steepening’, albeit not arti�cial but rather
an approximation to the true steepness (or curvature). Therefore, if the original parabola is
found to be not monotonic, instead of �tting a linear pro�le, the new approach consists of
�tting a monotone parabola but one which does not maintain continuity at both edges of the
interval (as indeed is generally the case when a linear pro�le is used directly).
The parabola (9) is judged to be monotone if it is strictly increasing or strictly decreasing

in the interval 06�61. It can still be judged not to violate monotonicity even when there
is a local (i.e. �∈ [0; 1]) extremum, provided that this extremum is judged to be genuine.
Authenticity of a local extremum is determined by examining the distribution of �i−1=2 in the
neighbouring CVs—see Reference [12] for details.
Consider the case of a CVi with �i+1=2¿�i−1=2 (similar equations apply when �i+1=2¡�i−1=2),

then the piecewise parabola (9) is not monotone within the interval [0; 1] (i.e. it has an
extremum outside the range [�i−1=2; �i+1=2]) if

��i¡�
l
i ≡ 2

3 �i−1=2 +
1
3 �i+1=2 (20)

or

��i¿�
u
i ≡ 1

3 �i−1=2 +
2
3 �i+1=2 (21)

It can be argued that in these cases (i.e. when (20) or (21) hold), which can be considered as
cases of ‘steep gradient’, a linear polynomial reconstruction cannot be considered as a good
approximation, and a higher-order polynomial is needed to better approximate the curvature.
Therefore, the new approach is to replace the original parabolic spline by a locally de�ned
parabola which has the properties: (i) it preserves the local density average value; (ii) it passes
through at least one boundary value (�i−1=2 or �i+1=2); and (iii) it is locally monotonic in the
interval [0; 1]. The monotonic constraint (iii) can be achieved by requiring zero derivative
(the limiting case of the original parabola being monotone) at the boundary (�=0 or �=1)
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identi�ed at step (ii). The coe�cients of these parabolae for the case of �i+1=2¿�i−1=2 are
given by

(a(0)i ; a
(1)
i ; a

(2)
i )= (�i−1=2; 0;−3�i−1=2 + 3 ��i) if ��i¡�

l
i

(a(0)i ; a
(1)
i ; a

(2)
i )= (−2�i+1=2 + 3 ��i; 6�i+1=2 − 6 ��i;−3�i+1=2 + 3 ��i) if ��i¿�

u
i

(22)

Note that the �rst parabola in (22) satis�es (13), �i(�=0)=�i−1=2, d�i=d�|�=0 =0
and �i(�=1)¡�i+1=2, whereas the second one in (22) satis�es (13), �i(�=1)=�i+1=2,
d�i=d�|�=1 =0 and �i(�=0)¿�i−1=2. Viewing the problem as one of constrained optimiza-
tion, it can be shown that this locally de�ned parabola (22) is optimal in that it minimizes
the integrated square di�erence, over the interval 06�61, between itself and the original
parabolic spline subject to the requirements of monotonicity. When �li6 ��i6�

u
i the original

parabola is monotone and no modi�cation is required. If ��i is outside the range [�i−1=2; �i+1=2],
then no higher-degree (greater than zero) reconstruction satis�es monotonicity and the use of
a piecewise constant reconstruction is the only choice left, i.e.

(a(0)i ; a
(1)
i ; a

(2)
i )= ( ��i; 0; 0) if ( ��i − �i−1=2)( ��i − �i+1=2)60 (23)

It is worth mentioning that in this modi�ed �lter the use of a linear reconstruction becomes
obsolete except for the natural case of ��i=(�i−1=2 + �i+1=2)=2 where the original parabola
degenerates to a straight line.

2.3. Computation of piecewise integrals

Having de�ned the piecewise �i(x) for each ECVi, the mass (Md
i )
n, given by (7), of LCVi,

which extends over the segment [xdi−1=2; x
d
i+1=2] at time t

n, is computed as

(Md
i )
n=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hl
∫ 1

�di−1=2

�nl (�) d�+
∑m−1

j=l+1 hj ��
n
j + hm

∫ �di+1=2

0
�nm(�) d�; m¿l+ 1

hl
∫ �di+1=2

�di−1=2

�nl (�) d�; m= l

(24)

where l and m¿l are the ECV indices associated with the segments in which xdi−1=2 and x
d
i+1=2

lie, i.e. xdi−1=2 ∈ [xl−1=2; xl+1=2] and xdi+1=2 ∈ [xm−1=2; xm+1=2]. Also �di±1=2 are the local coordinates
corresponding to xdi±1=2, i.e. �

d
i−1=2 = (x

d
i−1=2 − xl−1=2)=hl and �di+1=2 = (xdi+1=2 − xm−1=2)=hm. The

integrals on the right-hand side of (24) are evaluated analytically.
For higher dimensions, the present 1D remapping algorithm can be used within a standard

directional splitting methodology or within the �ow-dependent cascade methodology used in
SLICE [2, 3]. In both approaches, a 2D (or 3D) problem is spatially split into sets of 1D
remapping problems to be solved using an algorithm such as PSM or PPM. The directional
splitting strategy (e.g. Reference [17] using PPM) decomposes a multi-dimensional prob-
lem into sets of 1D problems aligned in �xed directions parallel to the coordinate axes. A
drawback however is that it leads to signi�cant truncation errors which can unduly limit the
timestep for accuracy reasons [18]. To address this issue, the �ow-dependent cascade strategy
adopts a di�erent decomposition. A set of 1D remappings, aligned with one of the coordinate
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axes, is �rst performed as in the directional splitting method. However, the second set (and
third for 3D problems) of 1D remappings is instead performed in directions aligned not with
a �xed time-independent coordinate axis, but with that of a �ow-dependent Lagrangian mesh
that evolves in time. Details, together with results in both Cartesian and spherical geometries,
may be found in Reference [19].

3. OPERATION COUNTS AND TRUNCATION ERRORS FOR PSM AND PPM

3.1. Operation counts

Appendix A details the operation count for a 1D algorithm based on PSM or PPM. It is
found that for a non-uniform, dynamically varying grid, where pre-computation of grid-based
quantities is not possible, PPM is about 60% more expensive than PSM.

3.2. Truncation error analysis

The analysis of the truncation error for a non-uniform grid (i.e. hi �= hi+1) shows that both PSM
and PPM are third-order accurate in space, while for a uniform grid (hi= h) they are both
fourth-order accurate, see details in Appendix B. The results also show that for a uniform grid,
the leading error terms are the same for the asymptotic (converged) regime (h→ 0). However,
the leading terms for a non-uniform grid are di�erent but for a smoothly varying grid the
di�erence between the two terms is negligible, except for unrealistically large stretching of
the grid (hi=hi+1 � 1 or hi=hi+1 � 1). In what follows these results are con�rmed empirically
from convergence tests applied to uniform advection of a sine wave.

3.2.1. Convergence for uniform advection of a sine wave. Let the computational domain
be an interval �≡ {x∈ [0; 2L]≡ [x1=2; xN+1=2]} divided into N sub-intervals hi ≡ xi+1=2 − xi−1=2,
i=1; : : : ; N . Given an initial value problem with an average density distribution ( ��1; : : : ; ��N )
and an advection velocity u(x; t), then the problem is to compute, using the 1D remapping
algorithm of Section 2, the discrete solution { ��n+11 ; : : : ; ��n+1N } at time tn+1 ≡ tn +�t from the
known solution { ��n1; : : : ; ��nN} at time tn. The �rst test is for uniform advection of a sine wave,
where the initial distribution is

��(x; 0)= sin
(�x
L

)
(25)

and u(x; t)=U =1.
Table I displays the convergence of l2 error (see Appendix C for its de�nition) for this test,

as a function of resolution N , when using PSM and PPM on a uniform grid (parameters as
speci�ed in the table and hi= h). It can be seen that at lower resolutions PSM has a smaller
error than PPM, but in the asymptotic regime they have similar errors (i.e. the ratio of the
two errors, r, tends to 1 as N increases). It can also be veri�ed using the data in Table I
that the order of convergence is 4 (i.e. | ��num − ��an| ∝ h4) for both PPM and PSM. Similar
results, not shown, for a smoothly varying (non-uniform) grid show that, as expected, the
order of convergence of both PPM and PSM is 3 and r→ 1 as N increases. These results are
in agreement with the truncation error analysis of Appendix B.
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Table I. Convergence of l2 error as a function of resolution N (= number of intervals) for uniform
advection of a sine wave on a periodic domain with L=1=2, �=0:12 (�≡U�t=h=Courant number)

and 20 timesteps. The ratio r is de�ned as r≡ l2(PPM)=l2(PSM).
N 8 16 32 64 128 256 512

l2(PPM) 0:174E−01 0:587E−03 0:220E−04 0:102E−05 0:565E−07 0:341E−08 0:211E−09
l2(PSM) 0:549E−02 0:254E−03 0:143E−04 0:872E−06 0:541E−07 0:337E−08 0:211E−09
r 3.159 2.314 1.532 1.165 1.044 1.011 1.003

Table II. As in Table I but for uniform advection of an isolated cosine-squared hill with l=7=64.

N 16 32 64 128 256 512

l2(PPM) 0:340E+00 0:458E−01 0:489E−02 0:801E−03 0:139E−03 0:246E−04
l2(PSM) 0:230E+00 0:262E−01 0:260E−02 0:440E−03 0:769E−04 0:136E−04
r 1.479 1.746 1.881 1.823 1.813 1.810

3.2.2. Convergence for uniform advection of a cosine-squared hill. Convergence is now
examined for a slightly more practical problem, that of uniform advection of an isolated
cosine-squared hill [6, 7, 9–12, 17, 20]. The initial distribution is

��(x; 0)=

⎧⎪⎨
⎪⎩
cos2

[
�(x − L)
2l

]
for L− l6x6L+ l

0 otherwise
(26)

where 0¡l¡L, and it is again solved on the domain x∈ [0; 2L] with uniform velocity
u(x; t)=U =1.
Table II displays the convergence of l2 error for this test, as a function of resolution N ,

when using PSM and PPM on a uniform grid with the same parameters as for the sine-wave
problem above. It can be seen that the ratio of the error of PPM to that of PSM, r, does
not converge to 1 as is the case for a pure sine wave and as would be expected from the
truncation error analysis. The ratio r is maintained at 1.8 even for N as large as N =16284.
This indicates an advantage of PSM compared to PPM, even in the converged limit.

3.2.3. Convergence discussion. These two results (that the PPM and PSM errors converge
asymptotically to each other for a sine wave but that PPM converges to a signi�cantly larger
error than PSM for the isolated cosine-squared hill) can be reconciled by noting that de-
spite the cosine-squared hill being relatively smooth (it is continuous and has continuous �rst
derivative everywhere), its second derivative is discontinuous at x=L± l leading to a rela-
tively slow spectral decay. The consequence of this slow spectral decay is discussed in the
following.
For a given resolution, consider what range of wavenumbers (k) are well resolved, in the

sense that the asymptotic truncation error is applicable (and therefore that the PSM and PPM
results converge). This requires that, in the truncation error analysis, the higher order terms
in kh should be negligibly small, i.e. kh� 1. Speci�cally (but somewhat arbitrarily), let this
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requirement be that kh61=10. This requires the non-dimensional wavenumber k∗ to satisfy

k∗6
N
20�

(27)

where k∗ ≡ k(2L)=(2�) takes all integer values between 1 and N=2, and for uniform resolution
h≡ (2L)=N; N being the number of grid points. For the example presented in Table I, k∗=1
and (27) then suggests that this wave will only be well resolved (and therefore that the PSM
and PPM results will converge) for a resolution of at least 60 grid points. This is supported
by the results of Table I.
Since 16k∗6N=2, (27) implies that approximately only the lowest 1=30th of the spectrum

is well resolved. For the remaining part (the majority) of the spectrum, the higher order
terms in the truncation error analysis are likely to be important (thereby invalidating use of
the expansion used in the truncation error analysis). Therefore, in order for the asymptotic
truncation error to be applicable to any experimental comparison between PSM and PPM (and
hence for the experimentally determined errors to converge) the spectrum of the shape being
advected must decay rapidly as k∗ increases, so that negligibly small power remains in those
wavenumbers for which higher order terms in the truncation error analysis are signi�cant.
The error associated with any given wavenumber, E=E(k; h; �; ��; N ) (where � is the Courant

number and �� is the shape being advected), is the product of the truncation error, T(kh; �),
and the spectral amplitude, S(k; ��; N ). The total error of a scheme is given by the sum of
E over all wavenumbers. Of interest is whether the spectral decay of any given shape is
rapid enough for the total error to be dominated by the asymptotic truncation error, i.e. by
the well resolved wavenumbers. A pragmatic estimate of whether this is the case can be
obtained by considering only the well resolved end of the spectrum, 16k∗6N=(20�), and
assuming that the asymptotic (large k∗) spectral decay of the shape is known. (For there to
be a signi�cant overlap between 16k∗6N=(20�) and k∗ � 1 requires N to be large.) Then,
for �xed resolution, T varies as kp where p is the order of the scheme and S varies as k−q

where q is the asymptotic decay rate of the spectrum of the shape being advected. Therefore,
the error varies as

E∝ kp−q (28)

From this it is clear that, provided the assumptions of this approximate analysis hold, when
p¡q the relative errors for di�erent wavenumbers will increase as the wavenumber decreases.
If this is so then the total error (integrated over the whole spectrum) is likely to be domi-
nated by the error of the smaller wavenumbers for which the asymptotic truncation error is
applicable. In contrast, when p¿q, the error will increase as the wavenumber increases and
the total error is likely to be dominated by the larger wavenumbers for which the higher order
(in kh) contributions to the truncation error are likely to be important.
On a uniform grid, p=4 for both PSM and PPM. For the cosine-squared hill, the (con-

tinuous) Fourier series spectral coe�cients decay asymptotically as k−3 for large k so that
q=3. Therefore, p¿q and the comparison of errors between PPM and PSM is likely to be
dominated, not by the asymptotic truncation error (which are the same for both PPM and
PSM), but by the higher order terms which are di�erent for PPM and PSM. In order for this
not to be the case, and so to obtain the expected convergence of PPM to PSM, the spectrum
of the data being reconstructed or advected, must decay faster than the truncation error so
that q¿p. This is demonstrated in Table III where the results of the same error ratio tests
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Table III. Ratio r≡ l2(PPM)=l2(PSM) at di�erent resolutions N for
the generalized cosine hill (29) with di�erent powers n. L=1=2,

l=7=64, �=0:12 and 20 timesteps.

N 32 64 128 256 512 1024 2048

n=2 1.746 1.881 1.823 1.813 1.810 1.810 1.810
n=3 2.474 2.332 1.968 1.864 1.852 1.854 1.858
n=4 2.148 3.065 2.508 1.767 1.327 1.134 1.057
n=5 1.888 3.127 2.643 1.763 1.258 1.072 1.019

as for the cosine-squared hill are presented. Consider the following generalized cosine hill of
order n, namely

��(x; 0)≡

⎧⎪⎨
⎪⎩
cosn

[
�(x − L)
2l

]
for L− l6x6L+ l

0 otherwise
(29)

on the domain [0; 2L] with n a positive integer and 0¡l¡L. This generalized cosine hill (29)
is continuous, has its �rst n−1 derivatives continuous and its spectrum decays asymptotically
as k−(n+1). Then since, on a uniform grid, PPM and PSM have p=4, the total error is
expected to be well approximated by the asymptotic truncation error when n+ 1¿4, i.e. for
n¿3. This is indeed what is observed in Table III. The case n=4 is the �rst for which PPM
asymptotically has the same error as PSM.
From an intuitive perspective it would seem that the cosine-squared hill is not that patho-

logical, being relatively smooth. Indeed it is for this reason that it has been used for testing
the behaviour of advection schemes [6, 7, 9–12, 17, 20]. Therefore, the above results raise
important questions about the relevance of convergence tests (other than as important coding
tests). But are the results of practical signi�cance?
An example which suggests that they may indeed be so is numerical weather prediction

(NWP). This is an important problem which presents a critical challenge to CFD and which
is arguably dominated by advection. A crucial aspect of the atmosphere from an NWP per-
spective is the slow decay of the atmospheric energy spectrum. Nastrom and Gage [21]
derived a climatology of the atmospheric energy spectrum over scales ranging from 3 to
nearly 10 000 km (see also Reference [22] for further discussion of atmospheric spectra). For
synoptic scales (10 000–2 000 km) the Nastrom-Gage energy spectrum decays as k−3 whilst
for meso- and even smaller scales (around 600–3 km), the Nastrom-Gage energy spectrum
decays more slowly as k−5=3. This spectrum is itself distinct from the Kolmogorov k−5=3

spectrum for homogeneous three-dimensional turbulence which arises at much smaller scales,
with wavelengths signi�cantly less than the height above the surface [23]. Noting that these
spectral decay estimates are for energy spectra, it is to be expected that in all practical
meteorological applications, the asymptotic truncation error is unlikely to be applicable to
the comparison of the convergence of advection schemes.
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4. MONOTONIC RESULTS

To test the monotonicity part of the algorithm, let the initial distribution be given by [12]

��(x; 0;C) = {tanh[c1(x−c2)]+ tanh[c3(x−c4)]}{1+c5 sin(2�c6x)}{1+c7 sin(2�c8x−c9)}

+ {tanh[c10(x − c11)] + tanh[−c10(x − c12)]}+ c13 (30)

where C= {c1; : : : ; c13} is a set of constants. Two variants of this problem are used for
evaluation purposes: an irregular signal with mixed smooth and unsmooth parts, including
quasi-discontinuities, and a pro�le having steep gradients.
To simplify nomenclature within this section, ‘PSM’=‘PPM’ signi�es the use of PSM=PPM

without their respective monotonicity �lters activated: similarly for ‘PSM-M’=‘PPM-M’ but
with activation of their monotonicity �lters—see Equations (1.8) and (1.10) in Reference [1]
for the de�nition of PPM’s �lter. Thus all four schemes (denoted by PSM, PPM, PSM-M
and PPM-M) di�er only in their reconstruction module.

4.1. Uniform advection of an irregular signal

The initial �eld ��(x; 0;C1) for uniform advection of an irregular signal is given (as in Ref-
erence [12]) by (30), where C1 = [10; 0:3;−20; 0:6; 0:3; 11; 0:4; 10; 0:5; 200; 0:1; 0:3; 1], and it is
advected with uniform velocity U =1 on a uniform grid �xi=�x=constant, with N =50
intervals, and L=1=2. The timestep �t=1=Nt , where Nt =38 is the number of timesteps per
period, and the Courant number �≡U�t=�x� 1:3.
Table IV displays the errors for PSM, PPM, PSM-M and PPM-M for this problem after

one and �ve periods. It can be seen that overall PSM is more accurate than PPM. Fur-
thermore, the present monotonic �lter is more selective and damps less than that of PPM.
This is evident in Figures 1 and 2 which graphically display the results summarized in

Table IV. Comparison of errors for uniform advection of an irregular signal for 1
and 5 periods with Nt =38 timesteps per period and �≡U�t=�x� 1:3.

l1 l2 l∞ lmin lmax

p=1 (1 period)
PSM 0.04124 0.06647 0.14795 −0.04899 −0.03574
PPM 0.04987 0.07764 0.17581 −0.07327 −0.02943
PSM-M 0.03728 0.06853 0.14481 0.00000 −0.05400
PPM-M 0.04671 0.07956 0.15723 0.00000 −0.08269

p=5 (5 periods)
PSM 0.05667 0.08835 0.18713 −0.05069 −0.03932
PPM 0.06544 0.09944 0.20820 −0.07106 −0.04385
PSM-M 0.05370 0.08861 0.18226 0.00002 −0.05044
PPM-M 0.06947 0.10396 0.19312 0.00001 −0.11119
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Figure 1. Results after one complete period for the uniform advection of an irregular signal: (a) PSM;
(b) PPM; (c) PSM-M; and (d) PPM-M. Parameters as in Table IV, and numerical solutions are shown

with asterisks and continuous lines whilst analytical solutions are in dashed lines.

Table IV. After one period (Figure 1), it can be seen that PSM-M selectively removes
the undershoot that appears for x a little smaller than x=0:1, and the overshoot for x a
little larger, with negligible impact elsewhere. Although PPM-M similarly eliminates the
undershoot=overshoot around x=0:1, it has a signi�cant impact elsewhere (spurious damping=
smoothing) and, in particular, it spuriously �attens �� in the region 0:4¡x¡0:6, in a similar
manner to that observed in Reference [8] when PPM is used with its monotonic �lter. This
excessive smoothing by PPM-M is even more pronounced after an integration time of �ve
periods as shown in Figure 2. By contrast, after �ve periods, PSM-M again maintains con-
sistent results with PSM. The �lter is very selective and has minimal e�ect in the monotonic
regions (cf. Figure 2(c) with Figure 2(a)), in contradistinction to the PPM-M solution which
is excessively smooth. Summarizing, the present PSM monotonic �lter has a similar behaviour
to that of PPM near discontinuities. However, results di�er signi�cantly around the smooth
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Figure 2. As in Figure 1 but for 5 periods: (a) PSM; (b) PPM; (c) PSM-M; and (d) PPM-M.

part of the solution—the PSM �lter is more selective and damps signi�cantly less than that
of PPM.

4.2. Uniform advection of a steep gradient pro�le

The initial �eld ��(x; 0;C2) for uniform advection of a steep gradient pro�le is given
(as in Reference [12]) by (30), where C2 = [200; 0:1;−200; 0:7; 0; 0; 0; 0; 0; 100; 0:3; 0:5; 0]. It
is advected using the same parameters as in the previous problem except that Nt =71 and
�� 0:7.
Table V displays the errors for PSM, PPM, PSM-M and PPM-M for this problem. Similarly

as for the previous problem, PSM is more accurate overall than PPM. Figures 3 and 4
graphically display the results summarized in Table V. Because the pro�le is a composition of
quasi-step functions, there is little risk of excessive damping for the smooth (almost piecewise
constant) part of the solution. It is seen that, as is to be expected, both �lters behave very
similarly (cf. Figure 3(c) with Figure 3(d), and Figure 4(c) with Figure 4(d)).
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Table V. Comparison of errors for uniform advection of a steep-gradient
pro�le for 1 and 5 periods with Nt =71 timesteps per period and

�≡U�t=�x� 0:7.
l1 l2 l∞ lmin lmax

p=1 (1 period)
PSM 0.06805 0.09068 0.14953 −0.04434 0.03617
PPM 0.09023 0.10490 0.17220 −0.05094 0.04139
PSM-M 0.05848 0.08961 0.14395 0.00000 −0.00022
PPM-M 0.06301 0.09575 0.15071 0.00000 −0.00007
p=5 (5 periods)
PSM 0.10491 0.11817 0.17850 −0.03928 0.03354
PPM 0.12144 0.13117 0.19534 −0.04650 0.04666
PSM-M 0.08825 0.11380 0.17285 0.00001 −0.00025
PPM-M 0.09114 0.12099 0.17580 0.00000 −0.00148
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Figure 3. As in Figure 1 but for uniform advection of a steep-gradient pro�le with �� 0:7:
(a) PSM; (b) PPM; (c) PSM-M; and (d) PPM-M.
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Figure 4. As in Figure 3 but for 5 periods: (a) PSM; (b) PPM; (c) PSM-M; and (d) PPM-M.

5. CONCLUSIONS

A parabolic spline based remapping has been presented and tested for transport problems. Of
all piecewise parabolic functions that satisfy the given mass (average density) distribution,
it is an optimal reconstruction, since it possesses the minimum norm (or curvature) and the
best approximation properties [15].
A monotonicity �lter is also incorporated into the proposed scheme. The steepening

introduced here improves further the �lter presented in Reference [12]. The results show that
the present �lter is more selective and less damping than that used in the original PPM [1].
Whilst removing spurious under=overshoots near discontinuities, the PSM �lter has minimal
e�ect on the smooth part of the solution, unlike the PPM �lter.
An operation count shows PSM to be 60% more e�cient than PPM whilst a truncation error

analysis shows that both have the same order of accuracy. For a uniform grid they in fact
have the same asymptotic error. This is con�rmed with an idealized in�nitely di�erentiable
sine wave on a periodic domain. However, for the more practical case of the advection of
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a cosine-squared hill, PSM is found to be signi�cantly more accurate than PPM even in
the converged limit. This is due to the slow spectral decay of the shape. Analysis of the
problem shows that for the asymptotic truncation error to be applicable to such problems the
spectral decay of the shape being advected has to be faster than the order of the truncation
error (this was con�rmed empirically by advection of the generalized cosine hill). This is of
particular interest for atmospheric �ows which have slow spectral decay. This also highlights
the limitations of convergence tests for practical applications.
For higher dimensional remapping, this 1D-algorithm can be combined with a splitting

strategy. This can be a �xed-directional splitting (e.g. the Lin and Rood scheme with PPM
[17]) or �ow-dependent splitting such as the SLICE approach [2, 3]. This makes possible an
accurate remapping for higher-dimensional problems without incurring a prohibitive computa-
tional cost, as demonstrated in Reference [19] for the SLICE approach in both Cartesian and
spherical geometries.

APPENDIX A: COMPUTATIONAL EFFICIENCY COMPARISON

Consider the PPM and PSM algorithms (i.e. reconstruction and integration without the monoto-
nicity or steepening components) in a 1D context. Consider also a grid that is variable in
space and time, as is the case for application of Lagrangian based grids (e.g. Colella and
Woodward, [1, p. 175], SLICE [2, 3], and other temporal and spatially adaptive grids [24]).
Each algorithm is optimized and an operation count per node (or grid-point) is obtained.

A.1. PPM

The reconstruction part of PPM is (1.6) and (1.7) in Reference [1]. These equations can be
rewritten in an optimized form as

�j+1=2 = ��j + hj(dj+1=2 +mj+1=2) (A1)

where

mj+1=2 =
hj+1

bj−1=2 + bj+3=2
[2dj+1=2(kj − lj+1)− kjcj+1 + lj+1cj] (A2)

cj =
1

bj−1=2 + hj+1
[(hj−1 + bj−1=2)dj+1=2 + (bj+1=2 + hj+1)dj−1=2] (A3)

kj =
bj−1=2
fj+1=2

; lj+1 =
bj+3=2
gj+1=2

; fj+1=2 = hj + bj+1=2; gj+1=2 = bj+1=2 + hj+1 (A4)

bj+1=2 = hj + hj+1; dj+1=2 = ( ��j+1 − ��j)=bj+1=2 (A5)

Assuming a Courant number �¡1, the integration part of the algorithm consists of computing
��n+1j using (6) and (24), i.e.

��n+1j ≡ (M
d
j )
n

hj
=
∫ 1

�j
�j(�) d�+

hj+1
hj

∫ �j+1

0
�j+1(�) d�=( ��j −Mj−1) +

hj+1
hj

Mj (A6)
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where

Mj ≡
∫ �j+1

0
�j+1(�) d�= a

(0)
j+1�j+1 + a

(1)
j+1�

2
j+1=2 + a

(2)
j+1�

3
j+1=3

= �j+1[�j−1=2 − �j+1(�j−1=2 − ��j + ã
(2)
j+1(1− �j+1))] (A7)

�j+1 = (xj+3=2 − xdj+1=2)=hj+1 (A8)

ã(2)j+1 = �j−1=2 + �j+1=2 + 2 ��j (A9)

From (A1)–(A5) the Number of Operations (NO) for the reconstruction part of PPM is
NOrppm =27 (i.e. 14 Additions (a)+8 Multiplications (m)+5 Divisions (d), or more succinctly
NOrppm =14a+8m+5d), while for the integration part NO

i
ppm =16 (=9a+5m+2d). The total

number of arithmetic operations is therefore NOppm =NO
r
ppm+NO

i
ppm =43 (=23a+13m+7d).

A.2. PSM

For PSM, (14) is normalized by multiplying through by hi and the resulting equation is solved
using the following standard tri-diagonal solver [25]:

yj = hj=hj+1; rj=3( ��j + yj ��j+1); uj=yj; dj=2(1 + yj) (A10)

tj = uj−1=cj−1; cj=dj − tj; sj= rj − sj−1=cj; �j+1=2 = sj − tj+1�j+3=2 (A11)

The integration part of PSM consists of

��n+1j =( ��j −Mj−1) +
Mj

yj
(A12)

together with (A7)–(A9).
For PSM the number of operations for the reconstruction part (A10)–(A11) is NOrpsm =12

(=5a+4m+3d), while for the integration part (i.e. (A12), (A7), (A8) and (A9)) NOipsm =15
(=9a+4m+2d). The total operation count for PSM is NOpsm =27(=14a+8m+5d). It can
be seen that NOppm=NOpsm � 1:6 (i.e. PPM is 60% more expensive than PSM).

APPENDIX B: TRUNCATION ERROR ANALYSIS

In this analysis, a 1D problem with a variable grid and constant wind is considered. Given
an average density distribution ��i; i=1; 2; : : : the problem is to evaluate, analytically and
numerically using PPM and PSM, the average density at a Lagrangian cell (k). For simplicity,
let the left boundary of the Lagrangian cell k; xk−1=2, be inside the Eulerian cell (i), i.e.
xk−1=2 = xi−1=2 + �ihi (0¡�i¡1), and its right boundary xk+1=2 be inside the adjacent Eulerian
cell (i+1), i.e. xk+1=2 = xi+1=2 + �i+1hi+1 (0¡�i+1¡1). In what follows only the methodology

? Crown copyright 2005. Reproduced with the permission of Her
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and the principal results are given. The details of a number of coe�cients (�j, �j, !j, �j, �j,
	j, #j, 
j, �j) are omitted for brevity.
Making use of the de�nition (17), the average density of the Lagrangian cell k; ��anak , can

be analytically computed as

��anak ≡ R(xk+1=2)− R(xk−1=2)
xk+1=2 − xk−1=2 ≡ R(xi+1=2 + �i+1hi+1)− R(xi−1=2 + �ihi)

hi(1− �i) + �i+1hi+1 (B1)

The �rst 6 terms of the Taylor series expansion of R(y) about the centre-point xk =(xk−1=2 +
xk+1=2)=2 in terms of R(xk) and its derivatives are, for an arbitrary y

R(y)=R(xk) + (y − xk) dRdx (xk) + · · ·+ 1
120

(y − xk)5 d
5R
dx5

(xk) +O((y − xk)6) (B2)

Using (B2), R(xi+1=2 + �i+1hi+1) and R(xi−1=2 + �ihi) can be expanded about xk and substituted
into (B1) to give

��anak =
dR
dx
(xk) + �3

d3R
dx3

(xk) + �5
d5R
dx5

(xk) + · · · (B3)

where �j=�j(hi; hi+1; �i; �i+1).

B.1. PPM error analysis

Equations (1.6) and (1.7) in Reference [1] are used to evaluate the boundary values �j+1=2,
j= i−1; i; i+1 of the piecewise parabolae for the Eulerian cells (i; i+1). These estimates are
used to de�ne two adjacent parabola �i(�) and �i+1(�) using (9). Once these parabolae are
de�ned, the average density for the Lagrangian cell (k) of length hk ≡ xk+1=2−xk−1=2 ≡ hi(1−�i)
+ �i+1hi+1, can be computed as

��ppmk ≡ hi
hk

∫ 1

�i
�i(�) d�+

hi+1
hk

∫ �i+1

0
�i+1(�) d�=

j=i+3∑
j=i−2

�j ��j (B4)

where �j= �j(hm= i−2;:::;i+3; �i; �i+1). Making use of (17), (B4) can be rewritten in terms of the
Rj−1=2’s as

��ppmk =
j=i+4∑
j=i−2

�j−1=2Rj−1=2 (B5)

where �j−1=2 = �j−1=2(hm= i−2;:::;i+3; �i; �i+1). Using (B2), each Rj−1=2 is expanded about the cen-
tre point of the Lagrangian cell, xk , i.e.

Rj−1=2 =R(xk)+(xj−1=2−xk)dRdx (y)+ · · ·+ 1
120

(xj−1=2−xk)5 d
5R
dx5

(xk)+O((xj−1=2−xk)6) (B6)

Substituting (B6) into (B5), it is found that

��ppmk =
dR
dx
(xk) + �3

d3R
dx3

(xk) +!4
d4R
dx4

(xk) +!5
d5R
dx5

(xk) + · · · (B7)
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where !j=!j(hm= i−2;:::;i+3; �i; �i+1). The error of the PPM algorithm, Eppm, is therefore

Eppm ≡ ��ppmk − ��anak = �4
d4R
dx4

(xk) + �5
d5R
dx5

(xk) + · · · (B8)

where �j=!j − �j, and in particular �4 =!4 and is given by

�4 =
1
24
h4i �

2
i (�i − 1)2 − h4i+1�2i+1(�i+1 − 1)2

hi(�i − 1)− �i+1hi+1 (B9)

It can be seen from (B8), that PPM is third-order accurate in space for non-uniform grid. It
can also be seen that for a uniform grid and a constant wind (i.e. hi= h and �i= �), �4 = 0
and PPM is fourth-order accurate. For a non-uniform grid, �5 is a long expression that reduces
to �5 = �2h4(�− 1)2=24 for a uniform grid.

B.2. PSM error analysis

For PSM, all the terms in (14) are expanded in terms of Taylor series of the cumulative mass
function R and its derivatives about the point y≡ xi+1=2. This results in

�i+1=2 =
dR
dx
(y)+

1
72
(h2i hi+1−h2i+1hi)

d4R
dx4

(y)+
1
180

(h2i h
2
i+1−hih3i+1−hi+1h3i )

d5R
dx5

(y)+ · · · (B10)

Using (B10) (and similar equations for �i−1=2 and �i+3=2), the two adjacent parabolae �i(�)
and �i+1(�) are de�ned. Then the integral (B4) is evaluated in terms of R(xi+1=2) and its
derivatives. This can be expressed as

��psmk =
i+2∑
j=i
�jR(xj−1=2) +

∑
j=1
�j
djR
dxj

(xi−1=2) +
∑
j=1
	j
djR
dxj

(xi+1=2) +
∑
j=1
#j
djR
dxj

(xi+3=2) (B11)

where �j= �j(hm=i−2;:::;i+3; �i; �i+1), �j= �j(hm= i−2;:::;i+3; �i; �i+1), 	j= 	j(hm= i−2;:::;i+3; �i; �i+1),
and #j=#j(hm= i−2;:::;i+3; �i; �i+1). Using the Taylor series (B2), all the R(xj−1=2) and djR=dxj

in (B11) are expressed in terms of R(xk) and its derivatives, and then substituted back into
(B11). This gives

��psmk =
dR
dx
(xk) + �3

d3R
dx3

(xk) + 
4
d4R
dx4

(xk) + 
5
d5R
dx5

(xk) + · · · (B12)

where 
j= 
j(hm= i−2;:::;i+3; �i; �i+1). Finally, the error due to PSM can be expressed as

Epsm =�4
d4R
dx4

(xk) + �5
d5R
dx5

(xk) + · · · (B13)

where �j= 
j − �j. In particular �4 = 
4 is given by

�4 = {h2i+1hi+2�2i+1(�i+1 − 1)(hi+1 − hi+2) + h2i hi+1�2i (�i − 1)(hi+1 − hi)

+ h2i hi−1�i(�i − 1)2(hi − hi−1) + h2i+1hi�i+1(�i+1 − 1)2(hi − hi+1)

+3h4i �
2
i (�i − 1)2 − 3h4i+1�2i+1(�i+1 − 1)2}=72(hi(�i − 1)− �i+1hi+1) (B14)
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Similarly as for PPM, PSM is third-order accurate in space for a non-uniform grid, and fourth-
order accurate for a uniform grid and constant wind (i.e. �4 = 0 for hi= h and �i= �). For a
non-uniform grid �5 is a long expression that reduces to �5 = �2h4(�−1)2=24 (i.e. �5 = �5) for
a uniform grid.

APPENDIX C: ERROR MEASURES

Performance is measured using the error measures suggested by Williamson et al. [20], viz.

l1 ≡ I(| ��num − ��an|)
I(| ��an|) (C1)

l2 ≡
√
I(([ ��num − ��an])2)√

I([ ��an]2)
(C2)

l∞ ≡ max(| ��num − ��an|)
max(| ��an|) (C3)

lmin ≡ min( ��num)−min( ��an)
max( ��an)−min( ��an) (C4)

lmax ≡ max( ��num)−max( ��an)
max( ��an)−min( ��an) (C5)

where ��num and ��an refer to the numerical and analytical solutions, respectively, and I( ��) is
a global integral (or global mass) given by

I( ��)≡
N∑
i= 1

��ihi ∼=
∫ 2L

0
�(x; t) dx (C6)
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